Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, before the onset of anaphase, the spindle apparatus is always positioned with one spindle pole at, or through, the neck between the mother cell and the growing bud. This spindle orientation enables proper chromosome segregation to occur during anaphase, allowing one replicated genome to be segregated into the bud and the other to remain in the mother cell. In this study, we synchronized a population of cells before the onset of anaphase such that > 90% of the cells in the population had spindles with the correct orientation, and then disrupted specific cytoskeletal elements using temperature-sensitive mutations. Disruption of either the astral microtubules or actin function resulted in improper spindle orientation in approximately 40-50% of the cells. When cells with disrupted astral microtubules or actin function entered into anaphase, there was a 100-200-fold increase in the frequency of binucleated cell bodies. Thus, the maintenance of proper spindle orientation by these cytoskeletal elements was essential for proper chromosome segregation. These data are consistent with the model that proper spindle orientation is maintained by directly or indirectly tethering the astral microtubules to the actin cytoskeleton. After nuclear migration, but before anaphase, bulk chromosome movement occurs within the nucleus apparently because the chromosomes are attached to a mobile spindle. The frequency and magnitude of bulk chromosome movement is greatly diminished by disruption of the astral microtubules but not by disruption of the nonkinetochore spindle microtubules. These results suggest that astral microtubules are not only important for spindle orientation before anaphase, but they also mediate force on the spindle, generating spindle displacement and in turn chromosome movement. Potential roles for this force in spindle assembly and orientation are discussed.
منابع مشابه
The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the c...
متن کاملCortical capture of microtubules and spindle polarity in budding yeast - where's the catch?
In asymmetric divisions, the mitotic spindle must align according to the cell polarity axis. This is achieved through targeting astral microtubules emanating from each spindle pole to opposite cell cortex compartments. Saccharomyces cerevisiae is a powerful genetic model for dissection of this complex process. Intense research in this yeast has rendered detailed models for a program linking act...
متن کاملAstral Microtubule Pivoting Promotes Their Search for Cortical Anchor Sites during Mitosis in Budding Yeast
Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the ...
متن کاملThe role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast
BACKGROUND Two genetic 'pathways' contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement into the bud. Loss of either pathway resu...
متن کاملThe role of Saccharomyces cerevisiae coronin in the actin and microtubule cytoskeletons
Coronin was originally identified as a cortical protein associated with the actin cytoskeleton in Dictyostelium [1]. More recent studies have revealed that coronin is involved in actin-based motility, cytokinesis and phagocytosis [2,3]. Here, we describe the identification of a single homolog of coronin in Saccharomyces cerevisiae, which we show localizes to cortical actin patches in an actin-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 119 شماره
صفحات -
تاریخ انتشار 1992